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UNIFORM SPECTRAL AMPLITUDE WINDOWING FOR
HYPERBOLIC-FREQUENCY MODULATED WAVEFORMS

INTRODUCTION

The development of classification algorithms within the Naval Research Laboratory Shallow
Water Active Classification Project (ONR Project RJ14B87) requires that the response of the
target be measured over a broad range of frequencies. This must be done with sufficient fidelity
to resolve the subtle acoustic features of the target. It will allow algorithms to be developed that
determine not only the class of target present (if one is present), but also target aspect.

A waveform used in an active sonar system that collects data for a classification algorithm
must meet several criteria. First, the waveform must be broadband and fill all available bandspace
offered by the transducer. The waveform should produce a high-resolution range profile of the
target when matched filtered, so it must be a pulse compression waveform. Moreover, it should
be Doppler-tolerant, that is, the zero-Doppler matched-filter response to a return should yield
the range profile of the target even if the target is moving. Finally, the waveform should have a
flat spectrum; this will allow a quick in situ look at the target spectrum without extensive post
processing to compensate for the spectral coloring of the waveform. It will also simplify the design
of a classifier.

With these criteria in mind, we consider the hyperbolic frequency-modulated (HFM) waveform
as a good candidate. In its traditional form, it immediately meets most of these criteria; it is a
broadband, Doppler-tolerant, pulse-compression waveform [1-5]. The waveform does not have a
flat spectrum, especially below 1 kHz. However, with the correct time window, the spectrum can
be made essentially flat. The design of such a window is the subject of this report.

THE HYPERBOLIC FREQUENCY-MODULATED WAVEFORM

The time-frequency function of the hyperbolic frequency-modulated waveform is given by

f(t) - t E f[O,T], (1)
f 2 -Bt/T

where f(O) = fl, f(T) = f2, B = f2 - fi is the bandwidth (in Hz), and T is the time length
(in seconds) of the waveform. Note that Eq. (1) is a hyperbolic function, hence the name of the
waveform. * If fi < f2, then the waveform is an upsweep, otherwise, it is referred to as a downsweep.
Waveforms using this form of time-frequency function possess the same pulse-compression property

Manuscript approved February 1, 1994.
*Note that the waveform period given by 1= f(t) is a linear function, thus, the waveform is also known as a linear

period modulated (LPM) waveform. This name is commonly used among those working in high-frequency acoustics.
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2 D. M Drumheller

offered by the matched-filter processing of a linear frequency-modulated (LFM) waveform, but they
are also Doppler-tolerant. That is, the matched-filter response to an echo from a moving point target
will have a large peak value, even if the return is processed under the assumption that the target
is stationary.

The functional form of the waveform with a rectangular window is given by

x(t) = f Ae:) if t E [0, T], (2)
0 otherwise,

where A is an arbitrary constant. From Eq. (1) the instantaneous phase is

q(t)= 2r f(r)di- fif2 nl(f2 T-Bt). (3)

Figure 1 shows the spectrum of an HFM waveform for fi = 500 Hz, f2 = 700 Hz, and T = 2
seconds. Note the distinctive slant to the spectrum. This feature is most prominent in practical
HFM waveforms whose spectral centroid is below 1 kHz. In the next section we derive a time
window that will remove this feature of the spectrum.
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Fig. 1 - Spectrum of an HFM waveform with f, = 500 Hz, f2 = 700 Hz,
T = 2 seconds, and a rectangular window

WINDOW DESIGN FOR A FLAT SPECTRUM

Consider the case of an HFM waveform whose time-frequency function and phase are given by
Eqs. (1) and (3), respectively, but whose time function is now given by

X~) a(t)eM'() if t E [0, T], 4x(t) = () h °']
0 ~otherwise,(4

where a(t) is an arbitrary non-negative, real window. We now show that it is possible to chose a(t)
such that the waveform's spectrum will be flat. Here, the term 'flat' is used in a qualitative sense,
since the example given below will show that the spectrum can still have a large amount of 'ripple.'

2 D. M. Drumheller
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frequency
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Fig. 2 - Time-frequency function of a frequency-modulated waveform, and
the relationship between its slope, the dwell time At, and the frequency
band Af

Consider the arbitrary time-frequency function shown in Fig 2, denoted by f(t). Also, let

(t) -df(t)/dt. (5)

Consider a band of frequencies of size Af centered about f(t), then the approximate 'dwell time'
of the waveform within this band is approximately given by

At = Af (6)

It follows that the approximate spectral energy in the band Af(t) is

E a2 (t)At. (7)

Since we want the spectrum to be flat, the amount of spectral energy in all bands of fixed size Af
should be constant, irrespective of our choice of t. Thus, from Eqs. (6) and (7) it follows that

2(t) _ = constant. (8)
77(t) I(8

Equation (8) implies that our choice of the window requires

a(t) oc Ia n(t) (9)

Note that this expression is not specific to an HFM waveform; it is valid for any frequency-
modulated waveform. However, for the specific case of an HFM waveform, combining Eqs. (1),
(5), and (9) yields

a(t) f2 - Bt/T' (10)

where K is an arbitrary constant whose value depends on the application of the waveform. If the
waveform is to be used in a peak-power-limited system, it must obey the property 0 < a(t) < 1,
implying that
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Fig. 3 - Spectrum of an HFM waveform with f, = 500 Hz, f2 = 700 Hz,
T = 2 seconds, and a window designed to remove spectral slant

a(t) = *mi(fi, (11)
12 - Bt/T

If, however, the waveform is to be used for performing matched-filtering, then the energy normalized
window can be found by integrating the square of the window given in Eq. (9), setting the result
equal to 1, and solving for K. The result yields

a(t) = N/T2T (12)
12 -Bt/T'

Figure 3 shows the spectrum of an HFM waveform with the same frequencies and time length
as the waveform whose spectrum is given in Fig. 1; however, we have applied the energy normalized
window given in Eq. (12) and shown in Fig. 4. The spectrum is quite similar to that of a linear
frequency-modulated (LFM) waveform.

REDUCTION OF SPECTRAL RIPPLE: COMPOSITE WINDOWING

Although the 'slant' to the spectrum of an HFM waveform can be removed by applying the
window derived in the previous section, Fig. 3 shows that a large amount of spectral ripple can still
be present. The ripple is also known as Gibb's phenomenon and is due to the presence of the jump
discontinuities in the window at t = 0 and t = T [6,7].

To reduce the spectral ripple, we propose the use of an additional window to make the wave-
form's functional definition continuous. In this report we use the tapered-cosine window given
by

1 2 1-cos(-t~)] t E [O. aeT),

w(t) = ~ rT t) E [aT, (1 -oa)T), (13){ -Cos (T-t)] t E [(1- a)T,T],

0 otherwise,
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Fig. 4 - Envelope of an HFM waveform with fl = 500 Hz, f2 = 700 Hz,
T = 2 seconds, and a window designed to remove spectral slant

where a is a parameter that determines the effective width of the window, and 0 < a < 0.5. Use
of the window in Eq. (13) implies that the waveform's functional form is now given by

X(t) ={ w(t)a(t)eO(t) ifte[OT], (14)

where a(t) is given by Eq. (10). There are, of course, other possible choices for w(t), but the form in
Eq. (13) was chosen because it is a common window type. It is also once continuously differentiable
with a bounded second derivative, which implies that the waveform's spectrum obeys the property

X(W) = x(t)ewtdt _- a) as I - 0oo, (15)

where wo is the spectral centroid. This property implies that the 'spectral skirt' will be lower than
that of the spectra for the waveforms given by Eqs. (2) and (4).

Figure 5 shows the spectrum of an HFM waveform with the same frequencies and time length
as in Fig. 1. However, it has the functional form given in Eq. (14), for which the composite window
a(t)w(t) is shown in Fig. 6, with a = 0.1. The waveform was energy normalized numerically.
Clearly, the magnitude of the spectral ripple has been reduced.

If the waveform is to be used in a peak-power-limited system, then we must find the constant
K such that 0 < w(t)a(t) < 1, where a(t) is given by Eq. (10). To do this, we first determine where
the peak value of the window should occur. Some thought reveals that for an upsweep the peak
should occur in the interval t E [(1 - a)T, T], and for a downsweep the peak should occur in the
interval t E 10, aT]. Furthermore, the derivative of the composite window must be equal to zero at
the peak. Hence, differentiating a(t)w(t), and setting the result equal to zero leads to the following
equation whose solution gives the location of the peak if the waveform is an uIpsweep (fl < f2):

BaI{-cos [-(1--I)]} - XT (f 2 -_ ) sin[(1--)] = ° for t E [(1-c)T, T]. (16)
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Fig. 5 - Spectrum of an HFM waveform with fi = 500 Hz, f2 = 700 Hz,
T = 2 seconds, and a composite window with a = 0.1
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Fig. 6 - Envelope of an HFM waveform with f, = 500 Hz, f2 = 700 Hz,
T = 2 seconds, and a composite window with a-= 0.1
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By a similar procedure, it is possible to derive the following equation whose solution gives the
location of the peak if the waveform is a downsweep (fi > f2):

Ba[ 1-Cos()] +r(f2 -) sin( t ) = O for t E [0, aT] (17)

Denoting the solution to either Eq. (16) or (17) as tp, it follows from (10) that K = f2 - Btp/T.

Obviously the equations in (16) and (17) are nonlinear and must be solved numerically. How-
ever, several numerical algorithms can be used to find the solution, such as the bisection method,
secant method, regula falsa, and Newton-Raphson. Luckily, some relief from this problem can be
found by using mathematical software packages such as Mathematica [81 or Maple [91 that have
these numerical algorithms preprogrammed as functions.

BANDWIDTH COMPENSATION

Use of the tapered-cosine window will trim the leading and trailing edges of the envelope, and
consequently remove those spectral components associated with the beginning and end of the pulse.
The result is a reduction of the true bandwidth of the waveform; this can be seen by comparing the
spectra shown in Figs. 3 and 5. In this case, the window effectively removed the leading and trailing
5% of the energy in the window, hence, the spectrum in Fig. 5 is approximately 10% narrower than
the spectrum shown in Fig. 3.

To design a waveform with the desired bandwidth B, we must adjust the values of the fre-
quencies fi and f2 in Eq. (1). In this case, we define the 'design frequencies' fi and f2 such that
B = f2 - i, and now refer to fi and f2 as the 'parameter frequencies.' The design frequencies
are known. The parameter frequencies are used in Eqs. (1) and (3) and must be derived from the
design frequencies.

To derive design equations for the parameter frequencies we make the following observation:
the tapered-cosine window as given in Eq. (13) effectively trims the leading and trailing 100(a/2)%
of the energy from the rectangular window, so the bandwidth is approximately lOOa% of that
for the rectangularly windowed HFM. To compensate for this effect, we set fi = f(aT/2) and
f2 = f((1 - a/2)T). Thus, from Eq. (1) and the definition of the bandwidth B, it is possible to
show that

1 -a/2 + a/2 -1

(18)
a/2 1- /2 - -

77 _2 f2

The simultaneous equations in (18) can be easily solved for the unknown values fi and f2 by using
Gaussian elimination, or the method of determinants. The solution is

2(1-a)
(2 - a)/fi - a/f2

(19)
2(1 -ao)

J2 (2 - a)/fi2 - a/i

7
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Fig. 7 - Spectrum of an HFM waveform with fi = 500 Hz, f2 = 700 Hz,
T = 2 seconds, and a composite window with a = 0.1

We continue with the examples used in the previous sections based on an HFM waveform with
fj = 500 Hz, f2 = 700 Hz, and a = 0.1. Substituting these values of the design frequencies into the
equations in (19) yields fi = 492.19 Hz and f2 = 715.91 Hz. Figure 7 shows the spectrum of a unit
energy waveform using these parameter frequencies. It can be seen that it has the same bandwidth
as the waveform that uses a rectangular window, whose spectrum is shown Fig. 3.

The autocorrelation function of the waveform x(t) is defined as

roo 2
R(-r) = ] x(t)x*(t - r)dt ; (20)

Fig. 8 shows the autocorrelation functions of two of the HFM waveforms given in the examples. The
dashed line is the autocorrelation of the rectangularly windowed HFM whose spectrum is shown
in Fig. 1. The solid line is the autocorrelation function of the HFM presented in this section, to
which we have applied composite windowing and bandwidth compensation. Note that the shape
of the main peak and the location of the sidelobes are essentially the same for both waveforms.
This demonstrates that the use of the composite window and bandwidth compensation can have
negligible effects on the resolution of the waveform.

CONCLUSIONS

We have presented a method of designing HFM waveforms that have essentially flat spectra
possessing a small amount of ripple. This was accomplished by selecting an appropriate time
window. The form of the window a(t) given in Eq. (10) was also suggested by Kroszczyfiski in
Ref. 4, but its derivation is contained in a reference cited in Ref. 10. It is not known if the derivation
of the window is similar to the approach presented here, since the reference is not available.
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Fig. 8 - Autocorrelation functions of two HFM waveforms. Dashed line is
the autocorrelation of an HFM waveform with fi = 500 Hz, f2 = 700 Hz,
T = 2 seconds, and a rectangular window. Solid line is an HFM with the same
design frequencies and time length but with a composite window (Ca = 0.1) and
bandwidth compensation.
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